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Executive Summary 
The Department of Homeland Security, through the Science and Technology Directorate Standards Program, is 
developing performance standards for robots applied to urban search and rescue (US&R). The National Institute 
of Standards and Technology (NIST) is leading this effort with collaboration from subject matter experts within 
the Federal Emergency Management Agency (FEMA) US&R Task Forces and other response organizations, 
along with robot manufacturers and robot researchers intent on this application domain. The resulting standard 
test methods are being developed within the Homeland Security Applications Committee of ASTM 
International.   
 
Due to the breadth and complexity of urban search and rescue missions, and the diverse and evolving 
technologies present within robotic systems, the definition of performance requirements and associated test 
methods is an ambitious undertaking. The robot providers and eventual end-users need to reach common 
understandings of the envisioned deployment scenarios, environmental conditions, and specific operational 
capabilities that are both desirable and possible for robots applied to US&R missions. Toward that end, NIST 
organizes events that bring emergency responders together with a broad variety of robots and the engineers that 
developed them to work within actual responder training facilities. These informal response robot evaluation 
exercises provide collaborative opportunities to experiment and practice, while refining stated requirements and 
performance objectives for robots intended for search and rescue tasks. The most recent event was held April 4-
6, 2006 at Disaster City®, FEMA’s Texas Task Force 1 training facility built and operated by the Texas 
Engineering Extension Service, part of the Texas A&M System. Disaster City is considered by many to be the 
most comprehensive emergency response training facility presently available.     
 
Responders from the FEMA Task Forces, along with members of other response organizations who are active 
in the associated standards committee, were able to experiment with a wide range of robotic platforms: 16 
models of ground vehicles, 2 models of wall climbers, 7 models of aerial vehicles including a helicopter, and 2 
underwater vehicles. Ten different deployment scenarios were used around the Disaster City facility. In each of 
these scenarios, responders used the robots to search areas of interest for simulated victims and other embedded 
tests. Thirteen emerging test methods and their associated test artifacts were available to support robot/operator 
practice and training. These reproducible test methods, which are intended to help guide developers toward 
effective solutions while providing responders with known practice, training, and evaluation methods, will be 
refined based on the experiences and feedback from these events. The resulting these test methods will be 
submitted to ASTM International for balloting in the coming months.    
 
A standards committee meeting was held on the day after the exercise to distill the lessons learned. Numerous 
useful comments were noted, and will drive the standards development process. The key decisions made were 
to focus on three of the possible thirteen robot categories when developing the first set of test methods and 
associated robot usage guides. The responders selected small throw-able “peek bots;” wide-area ground survey 
robots; and aerial loiter/survey robots for near-term standard test methods leading to deployment. 
 
Extensive data was collected throughout the event. Responders were asked to formally and informally provide 
feedback on the scenarios, test methods, and robots. Videos and images were captured of all robots in action. 
Feedback regarding the test methods being piloted was also captured. Additional data collection efforts support 
new performance measurement infrastructure being developed by NIST: 3-D laser scans of scenarios to support 
ground-truth analysis and rubble characterization, simulation tools for robot development, and operator training; 
A robot tracking system, which uses active radio tags and surrounding antennas, to capture quantitative 
performance data within complex training environments. 
 
This report provides a summary of all the activities and results from this event. Highlight images and video of 
the robots can be downloaded from the NIST project home page: 
http://www.isd.mel.nist.gov/US&R_Robot_Standards. 
 
Disclaimer: Certain commercial equipment, instruments, or materials are identified in this paper to foster 
understanding. Such identification does not imply recommendation or endorsement by the National Institute of 
Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best 
available for the purpose. 
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1.0 Introduction 
Response robot evaluation exercises introduce emerging robotic capabilities to emergency responders while 
educating robot developers regarding the performance requirements necessary to be effective, along with the 
environmental conditions and operational constraints necessary to be useful. They also provide an opportunity 
to refine emerging test methods and associated test artifacts being developed to measure robot performance in 
ways that are relevant to emergency responders. Conducting these events in actual US&R training scenarios 
helps correlate the proposed standard test methods with envisioned deployment tasks and lays the foundation 
for the usage guides which will identify which robot categories appear best suited for particular response tasks. 
The resulting standard test methods and usage guides for US&R robots will be generated within the ASTM 
International Homeland Security Committee through the E54.08 Subcommittee on Operational Equipment. 
 
The second in an ongoing series of response robot evaluation exercises for FEMA US&R teams was hosted at 
the Texas Task Force 1 (TX-TF1) training facility known as Disaster City®, which is located at Texas A&M 
University, College Station, TX. Applicable robots and supporting technologies (e.g., sensors), purchasable 
and/or developmental, were invited to take part in this exercise which highlighted operationally relevant US&R 
scenarios specifically devised for ground, aerial, and underwater response robots.   The robots themselves were 
not formally evaluated during this exercise. 
 
Disaster City® is a 52-acre training facility designed to deliver the full array of skills and techniques needed by 
urban search and rescue professionals. As part of the Texas Engineering Extension Service (TEEX) at Texas 
A&M University and a training site for TX-TF1, the facility features full-size collapsible structures that 
replicate community infrastructure, including a strip mall, office building, industrial complex, assembly 
hall/theater, single family dwelling, train derailment and three rubble piles. 
 

Figure 1.1:  Images from the response robot evaluation exercise at Disaster City® April 4-6, 2006 
The event included three days of robot evaluations in available US&R training props. The first two days 
allowed the assembled responders to deploy the robots within the training props, become familiar with 
emerging technologies likely to provide benefits in the near term, and provide feedback to developers regarding 
realistic usage. On the third day, the emergency responders chose the most successful robots from the previous 
two days to perform targeted (and practiced) tasks in a four hour mock incident response exercise, which 
included several canine teams as well. The robot developers acted as advisors/observers for the US&R teams 
during this exercise. An informal after action briefing was held on the morning of the fourth day to distill 
applicable knowledge gained during the event and to refine the design parameters for the test methods proposed 
for standardization. All stakeholders were encouraged to provide feedback on the proposed test methods.    
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2.0 Background 

The event held at Disaster City® is part of an ongoing program funded by the Department of Homeland Security 
and conducted by the National Institute of Standards and Technology to develop performance standards for 
robots applied to urban search and rescue. During the initial phase of the program, FEMA Task Force members 
participated in a series of workshops in which the performance requirements for US&R robots were defined. 
During these workshops, potential robot deployment categories and employment roles were also enumerated. 
Roughly one hundred requirements were defined and organized into a systematic structure, along with thirteen 
robot deployment categories. The output of the program is to be a set of standard test methods complemented 
by usage guides to help responder entities decide which robot categories are best suited to which response 
scenarios. The performance test methods will provide a common language, reproducible test artifacts, and 
performance objectives defined by the responders to help robot developers refine their system designs and 
objectively measure performance. The usage guides will provide recommended performance ranges for 
different deployment scenarios. ASTM International is the host organization for the resulting standards, under 
the Operational Equipment subcommittee within the Homeland Security Applications Committee (E54.08)1. 
 
Due to the multi-disciplinary nature of robotics and the complexity of the urban search and rescue application, 
the derivation of performance test methods from the initial requirements is a multi-stage, iterative process. An 
initial attempt at prioritization of requirements was performed based on the responders’ input regarding which 
requirements applied to the greatest number of robot deployment categories; in other words, the requirements 
deemed most essential to any robot deployment, were selected. This initial list of requirements comprise the 
candidate set of “Wave 1” requirements for which performance test methods are being developed and 
standardized this year. Subsequent standardization waves will occur periodically as the technologies and robots 
mature enough to address the additional performance requirements. Along the way, regular response robot 
evaluation exercises will further understanding of how robots can augment responder capabilities within a 
variety of urban search and rescue scenarios, and will allow responders as well as robot developers to gauge 
progress in the maturity of the various component technologies as well as the integrated robotic systems. 

                                                           
1 http://www.astm.org/ 
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3.0 Participants 
NIST’s team of test engineers and support personnel worked closely with the TEEX/TX-TF1 personnel 
throughout the planning, setup, and administration of this event, which accommodated roughly seventy people 
and more than thirty robots across ten different scenario props at Disaster City. The TEEX/TX-TF1 personnel 
very ably managed the overall logistics on site, which contributed greatly to the success of this event and 
ensured safe operations throughout.  
 
The primary participants from the emergency responder community were representatives from FEMA US&R 
Task Forces, as has been the case throughout the DHS/NIST performance standards program for US&R robots. 
Some non-FEMA responders who are members of the ASTM standards task group also participated. One 
canine team participated throughout the event and was joined by several more canine teams for the final day 
mock incident response. 
 

Figure 3.1:  Responders Operating Robots and Exploring US&R Training Props 

As for robot participation, there were 16 different models of ground vehicles, 2 models of wall climbers, 7 
models of aerial vehicles including a helicopter, and 2 models of underwater vehicles. Two dynamic simulation 
environments were also available for visualization of high-fidelity robot models within realistic practice 
environments (including props at Disaster City®). The robots represented 9 of the 13 envisioned US&R 
deployment categories identified in earlier workshops.2 The Table below lists each model of robot available on 
site for the responders to use. There were multiple instances of some of the more mature models available. 
Representatives from the robot developers/manufacturers typically deployed their own robots, but some were 
deployed by the Alliance for Robotic Assisted Crisis Assessment & Response (ARACAR), a non-profit group 
that has a large cache of robots and is collaborating on the overall robot performance standards effort.     
 
Although not affiliated with any specific robot, several additional participants from the Department of 
Homeland Security, Department of Defense, Technical Support Working Group, and other government 
agencies, as well as academics from Texas A&M, were present during all or part of the exercise. 
 

                                                           
2 Statement of Requirements for Urban Search and Rescue Robot Performance Standards (Preliminary 
Version), May 2005. http://www.isd.mel.nist.gov/US&R_Robot_Standards/Requirements Report (prelim).pdf 
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Figure 3.2:  A) The assembled emergency responders and NIST personnel.  B) Ground, aerial, and 
underwater robots along with their associated developers and operators.  
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Table 3.1: Participating Robots 

IMAGE 
(Roughly by size) 

NAME 
 

DEVELOPER 
(Brought by) 

DEPLOYMENT CATEGORY 

 WALL CLIMBERS 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Nanomag  
(magnetic) 
 
 

Inuktun Services 
(ARACAR) 

4. Ground: Wall Climber 

VRAM Mobile 
Robot Platform 
(VMRP) 
(suction) 
 

Vortex HC, LLC 4. Ground: Wall Climber 

 GROUND    

ToughBot 
 
 

OmniTech Robotics, LLC 
(ARACAR) 

1. Ground: Peek Robot 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Eye Ball 
 
 

Remington Technologies 
(TX-TF1) 

1. Ground: Peek Robot 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Variable Geometry 
Tracked Vehicle 
(VGTV) 
 

Inuktun Services 
(ARACAR) 

1. Ground: Peek Robot 
6. Ground: Confined Space Shape Shifters 

Sneaky Robot 
 
 

M-Bots, Inc. 1. Ground: Peek Robot 
 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Bombot 
 
 

West Virginia High Tech 
Foundation 

3. Ground: Non Collapsed/Wide Area Survey 
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MARCbot 
 
 

Exponent, Inc. 
(ARACAR) 

3. Ground: Non Collapsed/Wide Area Survey 

Chaos 
 

Autonomous Solutions, 
Inc. 

2. Ground: Collapsed Structure/Stair Climber 
3. Ground: Non Collapsed/Wide Area Survey 
6. Ground: Confined Space Shape Shifters  

PackBot Scout 
 

iRobot Corp. 2. Ground: Collapsed Structure/Stair Climber 
3. Ground: Non Collapsed/Wide Area Survey 
6. Ground: Confined Space Shape Shifters 

PackBot Explorer 
 

iRobot Corp. 
(ARACAR) 

2. Ground: Collapsed Structure/Stair Climber 
3. Ground: Non Collapsed/Wide Area Survey 
6. Ground: Confined Space Shape Shifters 

PackBot EOD 
(w/ manipulator) 
 

iRobot Corp. 
(ARACAR) 

2. Ground: Collapsed Structure/Stair Climber 
3. Ground: Non Collapsed/Wide Area Survey 
7. Ground: Retrieval Robot 

MARV 
 
 

Mesa Robotics, Inc. 3. Ground: Non Collapsed/Wide Area Survey 
 

MATILDA 
 

Mesa Robotics, Inc.  2. Ground: Collapsed Structure/Stair Climber 
3. Ground: Non Collapsed/Wide Area Survey 

MATILDA  
(w/ manipulator) 
 

Mesa Robotics, Inc.  2. Ground: Collapsed Structure/Stair Climber 
3. Ground: Non Collapsed/Wide Area Survey 
7. Ground: Retrieval Robot 

TALON 
(w/ manipulator) 
 

Foster-Miller, Inc. 
(NIST) 

3. Ground: Non Collapsed/Wide Area Survey 
7. Ground: Retrieval Robot 

 7



Mini-ANDROS 
(w/ manipulator) 
 

Northrop Grumman 
Remotec 

3. Ground: Non Collapsed/Wide Area Survey 
7. Ground: Retrieval Robot 

ANDROS F6A 
(w/ manipulator) 
 

Northrop Grumman 
Remotec 

3. Ground: Non Collapsed/Wide Area Survey 
7. Ground: Retrieval Robot 

 AERIAL 
Wasp 
 
 

AeroVironment, Inc. 8. Aerial: High Altitude Loiter 

Nighthawk 
 
 

Applied Research 
Associates, Inc. 

8. Aerial: High Altitude Loiter 

Raven 
 
 

AeroVironment, Inc. 8. Aerial: High Altitude Loiter 

Evolution-XTS 
 
 

L-3 BAI Aerosystems, Inc. 8. Aerial: High Altitude Loiter 

CyberBug 
 
 

Cyber Defense Systems, 
Inc. 

8. Aerial: High Altitude Loiter 

Flying Bassett 
(helocopter) 
 

University of Alabama - 
Huntsville 

8. Aerial: High Altitude Loiter 
9. Aerial: Rooftop Payload Drop 
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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Tethered Blimp 
(20ft) 
 
 

ARACAR 8. Aerial: High Altitude Loiter 

 AQUATIC 
Pro III 
 
 

VideoRay, LLC 11. Aquatic: Variable Depth Sub 

SeaSprite 
(w/ scanning sonar) 
 

VideoRay, LLC 11. Aquatic: Variable Depth Sub 

 SIMULATIONS 
Symonym 
 
 

Acroname, Inc. 
 

Dynamic 3-D Simulation Environment 

USARsim 
 

Unreal Tournament Epic 
Games, Univ. of 
Pittsburgh, NIST  

Dynamic 3-D Simulation Environment 
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4.0 Scenarios 
This section briefly describes the training scenarios, or props, that were used during this exercise.  Responders 
identified access points within each scenario during the initial orientation, but had some flexibility regarding 
how to approach the search mission once they had a robot in hand. Some scenarios had multiple entry points.    
 
The responders were organized into four different teams that rotated across each scenario. Similarly, four teams 
of robots were created, primarily based on compatibility of their wireless communications. One of the 
challenges of deploying robots is the fact that many use the same radio communication frequencies, which can 
cause debilitating interference on site.  Some robots used tethered communications at times to avoid these 
issues. The robot teams rotated through two different scenarios each day. The responder teams rotated twice as 
fast, through four scenarios each day, to work with as many different combinations of robots and scenarios as 
possible over the three days. Responders rotated to each scenario for 90 minutes, spending 45 minutes at two 
different start points within the scenario working with two different robots. During aerial operations, all 
interested responders were at that scenario to work with the aerial robots sequentially. Ground robots that could 
run tethered to avoid any radio conflicts with the aerial vehicles were allowed to operate simultaneously on any 
other scenario.  Every possible combination of responders/robots/scenarios was not quite achieved given the 
limited time available. The Figure below shows an overview of the rotation schedule. 
 
A mock incident response on the afternoon of the last day allowed the responders to focus on specific scenarios 
employing the robots of their choice. Tethered operations were encouraged to limit radio interference and to 
ensure that responders had experience with the benefits and challenges of using tethered robots.  
 

 
Figure 4.1: The three-day schedule of responder and robot rotations across all available scenarios. 

 
In each of these scenarios, NIST embedded simulated victims, or “victim props,” that the responders were to 
locate using the robots. These simulated victims emitted assorted combinations of signs of life:  human form 
(mannequin parts), thermal signature (heating blankets and pads stuffed into clothing), movement (waving or 
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shifting), sound (yelling or moaning), C02 (in confined spaces). Examples of victims emplaced in the scenarios 
are shown in the Figure below. 
 

 
Figure 5:  Simulated victims embedded into various scenarios included partially visible victims in the 
ground based robot scenarios and entirely visible victims (from the proper vantage point) in the aerial 
scenario. 

House of Pancakes (Prop #130) 

Description: Partially collapsed building of unknown use with a roof almost in contact with the ground on the 
only accessible side. Enter through confined access under the metal roof or through breach, explore overall 
maze of obstacles and debris to look for simulated victims and hazardous materials stored inside (read visual 
acuity charts with hazardous materials placards) or identify cracks in walls when found. 

Single Family Dwelling (Prop #129) 

 
Description:  Partially collapsed dwelling due to earthquake. Main entrances are compromised, so the exterior 
wall has been breached. Enter the maze of rooms either through the door under a leaning collapse or through the 
breach to perform a pattern search of the entire dwelling for simulated victims and hazardous materials stored 
inside (read visual acuity charts and hazardous materials placards). Negotiate various rubble and debris 
including a large breach in the floor, perform a thorough search for simulated victims, move through and 
interact with the environment where necessary, and map the rooms to provide responders with all necessary 
information pertaining to victims, hazards, entrances/exits. There is also a basement accessible from the outside 
down steep stairs.  
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Strip Mall (Prop #131) 

 
Store A:  V shaped ceiling collapse. Robot access to Store B, which is closed off and as dark as possible. 
Store B: Vertical insertion through breach in pancake collapsed concrete slab. Maneuver under the slab from 
one end to the other over various rubble and debris to search for simulated victims and hazardous materials 
stored inside (read visual acuity charts and hazardous materials placards).   
Store D:  The responder must carry the robot up the leaning collapsed roof surfaces of Store D and vertically 
insert (lower, drop, or throw) the robot over the side to explore the partially collapsed space of Store E.  This 
was a known hazardous material store, so in addition to locating and mapping simulated victims, it must 
identify any hazardous materials stored inside (read visual acuity charts and hazardous materials placards).  

Rubble Pile #2 (Prop #132 near #133 platform) 

 
Description:  Fully collapsed structure with subterranean voids. The likely entrances found are supported 
somewhat loosely by concrete barriers (not pipes), have variable but confined dimensions, and contain 
problematic rubble, so are unsuitable for responder entry. Responders should deploy robots into these 
subterranean voids to perform primary search for simulated victims under the rubble and look for any potential 
hazards 

Wood Rubble Pile #3 (Prop #136) 

 
Description:  Fully collapsed wood structure with possible voids. Responders should deploy robots over the 
perimeter of this pile, either by climbing, throwing, or launching into the central area to look for simulated 
victims, map the area, and convey situational awareness.  A nearby steel structure under construction provides 
an elevated vantage point if a robot can scale the exterior to provide a contributing overview of the wood rubble 
pile. 
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Passenger Trains (Prop #126 and #127) 

 
Description:  Passenger rail cars were hit by industrial hazmat tanker cars of unknown substance and both 
trains partially derailed. Ground robots should circumnavigate all trains over tracks, various debris, and rubble.  
The robots should 3-D map the perimeter along with the location and positions of each car, including under 
elevated car (used in advanced shoring class). Robots should search the Sleeper Car ramping up from the 
ground, and search each curtained alcove on both sides looking for simulated victims. For the Crew Car on its 
side, robots should be inserted to explore the interior to locate any simulated victims or read the placards on 
hazardous canisters that may be in the mailroom. Access to the mailroom is too small for a responder in Level 
A suit. 

Industrial Hazmat Trains (Prop #116 and #117) 

 
Description:  Some of the hazardous tanker cars are also derailed, and apparently leaking fluids in places.  
Simulated surface victims appear incapacitated in/around the cars. Aerial robots should loiter over the area to 
scan the perimeter, map the location of all rail cars (see targets of interest), simulated victims, and the source 
and extent of all leaks.  They should also read the hazardous materials placards (aerial visual acuity test) to 
identify tanker contents.  

Water Scenario (Prop #000) 

 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Description:  Shallow, turbid pond with underwater features to be investigated. Use side-scan sonar and visual 
sensors to determine the shapes and sizes of the features on the sonar resolution test artifacts.  

 13



5.0 Emerging Test Methods 
A set of test methods designed to address specific responder-defined robot requirements were set up in and 
around the theater building (#134) and embedded into several scenarios. This provided an opportunity to refine 
these test methods based on feedback from responders and developers as they used them for practice and 
operator training. The initial test methods and artifacts are described briefly below. Another iteration will take 
place late Summer 2006 to incorporate feedback from the Disaster City event and the resulting test methods will 
be introduced into the standardization process through the ASTM International E54.08.01 task group. 

Logistics – Cache Packaging – Volume 
This simple test method addresses the requirement that the robot and all associated components (such as the 
operator control unit and spare parts) must fit within the responders’ cache packaging and transportation 
system.  Based on responders’ definitions of the metric, three standard packing cases were available for the 
manufacturers to determine which ones were required to contain the entire robotic system.   

Logistics – Cache Packaging – Weight 
This simple test method addresses the requirement on the part of the responders that they be able to move and 
store all equipment using existing methods and tools.  A scale was available for robot manufacturers to weigh 
their robotic system.  
 

  

Figure 5.1: Reference test artifacts for Logistics – Cache Packaging – Volume and Weight  

Sensing – Vision System – Acuity (Near Field) 
This test method captures the responders’ expectation to use video for key tasks such as maneuvering (hence the 
real-time emphasis), object identification (hence the color emphasis), and detailed inspection (hence the 
emphasis on short-range system acuity).  The responders noted the need to consider the entire system, including 
possible communications signal degradation and display quality, when testing this capability.  They also noted 
that this requirement is closely tied to the need for adjustable illumination to avoid washing out the image of 
close objects. The responders made no distinction regarding tethered or wireless implementations to address 
this requirement. The near and far field tests are implemented together below. 
 
Sensing – Vision System – Acuity (Far Field): This test method captures the responders’ expectation to use 
video for key tasks such as maneuvering (hence the real-time emphasis), object identification (hence the color 
emphasis), and path planning (hence the emphasis on long-range system acuity).  The responders noted the need 
to consider the entire system, including possible communications signal degradation and display quality, when 
testing this capability.  They also noted that the limiting case for long-range system acuity is probably 
assessment of structural integrity of buildings.  This requires identifying and measuring cracks in walls, 
inspecting the tops/bottoms of load bearing columns, and generally assessing the squareness of walls, ceilings, 
and floors. The responders made no distinction regarding tethered or wireless implementations to address this 
requirement. The associated reference test artifacts are shown below. 
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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

Figure 5.2: Reference test artifacts for Sensing – Vision System – Acuity (Far Field) 

 
The visual acuity test method used both near and far field charts and hazard labels in view from a single 
viewing location for the robot. The robots would either position themselves at the defined viewing location or 
was placed at the locations to save time. The operator was correctly read the smallest line possible, which 
corresponds to certain lines on the real-life hazard and shipping labels.  

Sensing – Vision System – Acuity (Aerial) 

This test method addresses the responder requirement to visually identify features of interest, in this case from 
aerial robots. The same principles guiding the other visual acuity tests are applied to this test.  Eye charts are 
scaled up to be comparable in size to, and much larger than, hazardous materials identification placards found 
on rail cars. The charts are positioned vertically to simulate the orientation that hazmat placards have normally 
on tanker cars.  Test targets are marked with 1.2 m square black panels with white Xs to help the robot 
operators find and focus on specific targets of interest within the scenario. The Xs are placed on the ground in 
unique groupings. The aerial operators identify such groupings by reporting the number of Xs and overall 
pattern and then proceed to investigate the target of interest. The associated reference test artifacts are shown 
below.  
 

Figure 5.3: Reference Test Artifacts for Sensing – Vision System – Acuity (Aerial) 

Sensing – Vision System – Acuity (Underwater): 

This test method was conducted using underwater targets designed to measure sonar resolution.  In this case, 
however, the operator was instructed to identify the shape and measure the size of features found on the various 
underwater targets.  Due to the murky water, the robot needed to almost touch the target to visually identify the 
features. The operator was also instructed to draw the pattern seen, which in the case of the grid based circular 
cutouts, required stations keeping, indexing from grid to grid, and keeping track of grids already identified. The 
associated reference test artifacts are shown below.  
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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Figure 5.4: Reference test artifacts for Sensing – Vision System – Acuity (Underwater): 

Payload – Manipulation – Maximum Reach 

This test method addresses the responder requirement to use robotic manipulators to perform a variety of tasks 
in complex environments. This directed perception test captures discrete ranges of useful manipulator reach 
with a payload, which in this case is a camera and a light (variable illumination was very helpful in this test).  
The test consists of four levels of stacked boxes (46 cm tall x 46 cm deep x 61 cm wide) with 15 cm diameter 
access holes on all sides.  Each box contains targets inside, including a near field visual acuity chart mounted to 
the rear of the box and a colored light stick in a known orientation centered and affixed to the bottom of the 
box.  The access holes are vertically centered on each box, and located either on the right or left quarter line, 
requiring a skewed view to identify both targets inside. Robot operators identify and report the smallest 
readable line of the visual acuity chart along with the color and orientation of the glowing light stick.  Other 
uses of these box stacks include canine units training with explosive ordinance sample targets inside the boxes; 
dogs can typically clear the lower three levels of all boxes encountered. Large robots can reach the top-level 
access holes but often exhibit balance issues, which are exacerbated by so-called orange (half-cubic) random 
stepfields surrounding three sides of the test stack.  There is always one side of the stack approachable from flat 
flooring. The associated reference test artifacts are shown below.  
 

 

Figure 5.5: Reference test artifacts for Payload – Manipulation – Maximum Reach. The artifacts 
surrounding the boxes are orange (half-cubic) random stepfields. 

Payload – Manipulation – Retrieval 

This test method addresses the responder requirement to retrieve objects, not necessarily configured for robot 
manipulators, within complex environments.  This manipulator dexterity test setup is similar to the directed 
perception test in that it involves a stack of four shelves at 46 cm incremental elevations (the third shelf is 
roughly at table height) and surrounded on three sides by so-called orange (half-cubic) stepfields, with one side 
of the shelving stack accessible from flat flooring.  Each shelf contains nine wooden blocks centered on a 3x3 
grid, with consistent orientations to challenge particular gripping approaches. The blocks are 4x4 posts cut into 
three cubic lengths, so are larger than most grippers can grab in at least one dimension. Robot operators 
approach the shelf stack from a flat flooring side and remove as many blocks as possible from as many shelf 
levels as possible. They repeat the task from a stepfield side to complicate robot orientations and mobility. The 
number and locations (x, y, z) of all blocks removed from any given side are noted. The associated reference 
test artifacts are shown below.  
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Figure 5.6: Reference test artifacts for Payload – Manipulation – Retrieval 

Human/System Interaction – Acceptable Usability 

This test method addresses the responder requirement to operate robotic systems simply and effectively.  The 
metric measures the percent of timed tasks operators can successfully complete.  The operators are to navigate a 
maze-like course and locate specific visual cues that identify candidate “gates” in the maze.  They have to judge 
whether the robot can fit through the gates and then attempt to navigate the robot through the gates. The 
dimensions of the overall maze (width of aisles and gates) are proportional to the size class of the robot. The 
associated reference test artifacts are shown below.  
 

 

Figure 5.7: Reference test artifacts for Human/System Interaction – Acceptable Usability 

Communications – Range – Beyond Line of Sight 

This test method addressed the responder requirement to project remote situational awareness around corners of 
buildings and into compromised or collapsed structures.  During this test, the operator navigated a robot down 
the length of a reinforced concrete building (the Strip Mall was roughly 30 m long), while maintaining a path 
within 1 m of the building.  At the far end of the building, the robot turned 90 degrees to drive along the far side 
of the building.  The distance beyond line of sight, traversed along the far side of the building, was measured 
until communications was lost. The building used for this test is shown below. 
 

  

 

Figure 5.8: Path along building walls used for Communications – Range – Beyond Line of Sight 

 17



Mobility – Locomotion – Sustained Speed 
This test method measures robot speeds and basic maneuverability on different surfaces while maintaining a 
proscribed course.  The courses required predictable changes in direction (zig-zags) over three different ground 
surfaces: grass, pavement, and NIST’s random stepfields as an abstracted, but repeatable, rubble-like terrain. 
The associated reference test artifacts are shown below. 
 

 
Figure 5.9: Reference test artifacts for Mobility – Locomotion – Sustained Speed.  Overview of the zig-
zag course (left), on grass (middle), and on pavement (right). 

 
Figure 5.10: Reference test artifacts for Mobility – Locomotion – Sustained Speed. The abstracted 
rubble course is made of red (full cubic) random stepfields. 

 

Mobility – Aerial – Path Following 
This test method addressed a new requirement identified in the course of designing the aerial portion of this 
exercise.   As a qualification event for participating in the hazmat train scenario, aerial vehicles had to follow a 
defined course.  Measuring the ability of an aerial vehicle to track a known path and navigate over particular 
ground locations is essential for ensuring that the aerial vehicle is controllable and predictable, which is 
especially necessary for navigating within urban settings. The associated reference test artifacts are shown 
below. 
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Figure 5.11: Reference test paths and artifacts for the Mobility – Aerial – Path Following 

Mobility – Aerial – Station-keeping 

This test method addressed the responder requirement to maintain stationkeeping around a target of interest.  In 
the case of aerial vehicles, fixed diameter orbits were required to maintain focus on a target of interest.  For 
vertical take-off and landing (VTOL) aerial platforms, the test method involves maintaining a fixed position and 
orientation on near a target in order to read visual acuity charts or identify other targets of interest.  The operator 
is allowed to do so manually, however, hands free stationkeeping is preferable and will eventually be 
incorporated into the metric. The associated reference test artifacts are shown below. 
 

 

 

Figure 5.12: Mobility – Aerial – Stationkeeping tests were performed by a helicopter around the 
train wrecks.   Reference test artifacts for Sensing – Vision System – Acuity (Aerial) are shown in 
the right picture at the base of the light pole, although the targets are located on the far side (down-
range). 

Mobility – Stair Climbing, Ramps, and Confined Space Access 

These test methods address responder requirements for mobility on stairs, ramps, and through confined spaces. 
These test methods used artifacts that were readily available within the various scenarios.  These specific test 
artifacts will not be formally submitted to the standards process.  However, fabricated versions of such test 
artifacts, which can be easily proliferated to robot developers, will be included in proposed performance test 
methods. The tests were conducted using the features shown below. 
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Figure 5.13: Several test methods were conducted using features already available in the 
environment.  For example, Mobility – Stair Climbing, Ramps, and Confined Space Access. 
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6.0 Data Collection 
This event provided a focused opportunity to capture feedback from responders and manufacturers. 
Questionnaires regarding the scenarios and the test methods captured the impressions of all the stakeholders.  
Further feedback was collected from the responders only during a “Hot Wash” review meeting immediately 
following the event. Copious images and video of the robots in action were also collected. This section 
describes briefly the data collected.    

6.1 Images and Video 

The organizers collected images and videos of robots and personnel participating in the event. Each robot 
developer will receive all media related to their robots. Highlight images and generally successful robot videos 
can be found on the NIST project home page:  http://www.isd.mel.nist.gov/US&R_Robot_Standards/. 

6.2 Responder Questionnaires 
Responder feedback was captured regarding the relevance of the scenarios as training props and the operation 
of robots within the scenarios. The focus was on how effective different robots were within the scenarios to get 
a general sense of how well the responders felt they operated as a team with the robots. The form used is shown 
in the figure below. The numeric responses to the questionnaire shown were averaged. These averages are 
references in the general discussion below. Analysis of the feedback from the responders suggested certain 
trends: 
 
Concerning how representative the scenarios were perceived to be:  

• Hazmat Train (6.0) 
• House of Pancakes (5.8) 
• Rubble Pile (5.7) 
• Dwelling (5.5) and Wood Pile (5.5) 
• Passenger Train (5.4) 
• Strip Mall (5.0) 

 
Concerning how representative the tasks within each scenario were perceived to be:  

• Rubble Pile (6.0) and House of Pancakes (6.0) 
• HazMat Train (5.3) 
• Passenger Train (5.2) 
• Dwelling (5.0) and Wood Pile (5.0) 
• Strip Mall (4.5) 

 
As for ratings of team performance at each scenario, the scores were: 

• HazMat Train (approximately 5.3) 
• House of Pancakes (5.19) 
• Strip Mall (5.14) 
• Dwelling (4.74) 
• Wood Pile (4.65) 
• Passenger Train (4.62) 
• Rubble Pile (4.4) 

 
Robot capabilities: 

• HazMat Train (5.5) 
• Strip Mall (5.0) and Wood Pile (5.0) 
• House of Pancakes (4.5) 
• Passenger Train (4.1) 
• Dwelling (4.0) 
• Rubble Pile (3.2) 
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Scenario utility: 

• HazMat Train (5.8) 
• Wood Pile (5.0) and House of Pancakes (5.0) 
• Strip Mall (4.9) 
• Dwelling (4.0) 
• Rubble Pile (3.5) 
• Passenger Train (3.2) 

 
Time required to complete: 

• Dwelling (5.8) 
• House of Pancakes (5.5) 
• Wood Pile (4.8) 
• HazMatTrain (4.3) 
• Strip Mall (4.1) 
• Passenger Train (3.9) 

 
Robot-responder performance: 

• Strip Mall (5.2) 
• Wood Pile (5.0) and House of Pancakes (5.0) 
• HazMat Train (4.1) 
• Passenger Train (4.0) and Rubble Pile (4.0) 
• Dwelling (3.8) 
 

Ratings for quality of operator interface: 
• HazMat Train (5.8) 
• Dwelling (5.7) 
• Wood Pile (5.0) and House of Pancakes (5.0) 
• Rubble Pile (4.6) 
• Strip Mall (4.5) 
• Passenger Train (3.6) 
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Figure 6.1: A scenario and robot evaluation form. The questions and scales are shown. Each 
question also had space for comments (not shown).  

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Responder 

Expert 

Self-
Declared 

 

Figure 6.2: Example Form from Proposed Test Method.  This particular one is for a self-declared 
test method, so only the "S" portion would be filled out. 

 
Results of the piloted test methods were also captured during the exercise. Some metrics were self-declared 
while others were measured using the test artifacts described previously. The self-declared tests included many 
of the “yes/no” logistics requirements, wherein the manufacturer is expected to fill out the appropriate 
responses to the questions. During data collection NIST also wanted to differentiate between expert and novice 
users of the robots. Expert user data can serve as a baseline of performance against which to measure novices 
and also capture their relative improvement towards “expert” status when they undergo training. With few 
exceptions, the responders were considered novices in terms of robot usage. We do not include the data 
captured in this category because it was purely intended as a trial collection of data and whatever data was 
collected is used to provide statistical trends – not measure performance of individual robots at this time. 
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6.3 “Hot Wash” Discussions 

At the end of the third day, a “hot wash”3 was conducted, wherein NIST staff debriefed the responders to get 
their impressions of the overall exercise, scenarios, and robots. In particular, NIST was interested in gauging the 
responders’ prioritizations of robot categories in terms of technical maturity. In other words, which categories 
were closest to being fieldable in a disaster response? Some of the issues brought up in the hot wash were 
explored further on the final day during the standards committee meeting. The initial categories of robots help 
determine the operating ranges for the test method designs. 
 
The responders felt that the following categories of robots were nearly ready to field:   

• Small, throwable, so-called “peek bots.” Robots that are able to be deployed into very confined spaces 
and send video or potentially sensor data back to the operators.  

• Aerial survey robots that could “look over the hill” to assess the situation and determine at least which 
roads are passable. US&R teams can save valuable time if they can determine whether a roadway is 
blocked. They don’t necessarily expect aerial robots to assess structural integrity or even detect victims.   
They would like to be able to monitor atmospheric conditions from these platforms as well. 

• Wide-area survey robots, which could support a Type II downrange reconnaissance mission. These 
robots don’t necessarily have to enter confined spaces or traverse rubble piles, but they do need to be 
able to climb stairs or at least curbs and modest irregular terrain. They need GPS tracking with info 
overlaid onto a map. They would typically move quickly down range (at least 1 km) to assess the 
situation and deploy multiple sensors (chemical, biological, radiological, nuclear, explosive) with 
telemetry.   

 
There is growing interest in seeing what sensors are available, or will be available, to mount on the different 
robots. The target sensor package to install first is a four gas monitor that the responders currently use. 
 
Several other constructive comments covered other aspects of robot capabilities and performance. This 
summary includes observations during the course of the event, as well as those that were noted during the hot 
wash. The responders identified the following improvements for current implementations: 

Sensors 
• Thermal/infrared capabilities, to help locate victims as well as to identify fires and hot spots. This is 

particularly critical when there is smoke. 
• Onboard mapping of environments when navigating through smoke. 
• Better navigation aids, such as GPS with the ability to show the robot coordinates and direction of view. 
• Better placement of cameras, so they provide better depth perception. Responders sometimes view the 

same location from two different camera perspectives in an attempt to gain depth perception. Cameras 
should view the robot’s own tracks or wheels to help with situational awareness. 

• Better far field visual acuity, up to 1000 feet, to help with planning. 

Mobility 
• Better mobility over loose debris. Random stepfields provide reasonable abstracted rubble, but should be 

looser to allow displacing individual steps. Wires and strings should be added to snag tracks. 
• Continuous driving after throwing a track, especially if throwing tracks is a periodic. 
• Minimum speed of four miles per hour. 

Communications 
• Better radio communications, should allow choices of frequencies if one becomes problematic.  
• Indication of radio communications signal strength and/or bandwidth – maybe even automatically 

detected to change frequencies and improve signal quality.  
• Longer radio communications ranges both in-sight and beyond line-of-sight. 
• Tethered communications presented a clear signal for long range and beyond line-of-sight problem, but 

the tether implementations introduced mobility complications and the additional workload for the 
operator to remember the tether, not run over it, and spool it in our out.     

                                                           
3 A performance review, particularly after a training exercise or combat operation. 
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Human/System Interaction 
• Easier operator interfaces. Some are too complex (too many modes), while others were easier to learn. 

There was a lot of variation in the “usability” of the controllers for the robots.  
• Better feedback on the robot state, such as arm position and runtime remaining, etc. The amount of 

information available to the operator at the control station also varied.  
• Better OCU displays for daylight conditions. Responders resorted to draping their jackets over their 

heads and the OCU at times. 
• Better audio feedback to the operator, to listen to the robot’s actions more than to search the 

environment.  Directional audio (stereo) and headphones were very helpful.  
• The usability test method should be modified to separate out camera manipulation (which was part of the 

procedure in the version piloted at this exercise).  

Manipulation 
• Independent base rotation joints for manipulators, to remove reliance on mobility (tracks or wheels) to 

rotate the manipulator.  Especially helpful when the robot is on uneven terrain.  
• Test methods for opening doors, which are important tasks for conducting searches.  

Logistics 
• Easier track replacement in the field, especially if the tracks get thrown periodically.  
• Easier wash-down and decontamination when necessary. Many of the robot designs would pool fluids in 

body features. Smoother designs would allow fluids to run off. 

Concepts of Operation 
Several responder teams paired up different robots in their scenarios. They used them collaboratively in the 
following manners: 

• A larger robot carried a smaller robot to a particular location and released it. The smaller robot then 
conducted the search in more confined spaces. 

• Multiple robots were positioned to provide multiple views of a location, or one robot’s cameras observed 
a second robot as it moved for better remote situational awareness. 

• One robot assisted another robot, either by opening a door or removing debris from the robot’s tracks.  
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7.0 Scenario Descriptions Using 3D Imaging 
An essential element in defining performance metrics is the ability to clearly understand and describe the 
operating environment of the system under test. For US&R robots, both qualitative and quantitative measures of 
the environments in which platforms are tested and deployed are of great interest4. To address this need, NIST 
researchers are developing a building collapse taxonomy to support the emerging US&R robot performance 
standards. The effort will focus on developing a framework for integrating building classification, disaster type, 
and collapse type to provide general descriptions of probable operating environments. NIST personnel are also 
researching the use of 3D imaging sensors and range image analysis to characterize rubble (2.5D approach) and 
confined space voids (3D approach).  
 

Figure 7.1: A robot shown approaching a tunnel passage under the rubble pile (left). The laser 
scanner captures high-resolution geometry data of all surfaces in the area (middle).  The resulting 
“point cloud” of range data from that single scan location provides a ground-truth model of the actual 
rubble (right). Multiple scans from many different scan locations can be combined to produce overall 
images of large, complex environments. 

To support these efforts, NIST researchers teamed with Optira, Inc.5 to produce laser scan data of three of the 
training scenarios at Disaster City. These scenarios included the rubble pile (prop #132 near #133 platform), the 
wood pile (prop #136), and the passenger train derailment (prop #126 and #127). 3D image data sets were 
collected using two commercially available laser scanners over the course of three days. Each scenario was 
scanned from multiple locations and each scan location was registered using targets placed in the environment. 
These targets were independently measured to provide survey control. Figures below show elements of the 3D 
imaging process. 
 
A laser scanner is a 3D imaging device that uses a laser to measure the distance to an object. The laser beam is 
scanned both horizontally and vertically over time to image the operator-designated field of view. The distance, 
azimuth, and elevation information collected from each measurement in the scan is used to create high-
resolution point clouds containing hundreds of thousands of points. Individual scans are then merged through a 
process called registration to create accurate point clouds of the scenes. The figures below depict screen 
captures of the scenes generated in point cloud viewing software. Camera viewpoints can be changed to 
examine the 3D data from multiple viewing angles and measurements such as point-to-point distance can be 
readily determined. 
                                                           
4 For examples of qualitative measures of an environment consider trail rating systems for ski slopes or the Beaufort Wind 
Force Scale for estimating wind speed from sea state.  A quantitative metric in the US&R context could be a specific 
measure of the ‘roughness’ or ‘bumpiness’ of the terrain surface derived using techniques such as fractal dimension analysis 
or wavelet energy statistics.  An interesting approach would be to develop a method to evaluate the impedance of an 
environment to being traversed.  This would be similar to the Yosemite Decimal System (YDS) for evaluating climbing 
routes.  Although subjective, the YDS has evolved into an effective method for quantifying route difficulty, albeit for only 
one mobility platform – humans.  From this discussion one can imagine a specific robot platform with an UDS (US&R 
Decimal System) number of x for an environment with fractal dimension of y.  A different platform may – and likely will – 
have a different UDS number for the same environment.  The two measures taken together would provide comparable and 
verifiable information about the mobility of the robot platform. 
5 Optira, Inc. (www.optira.com) specializes in providing as-built documentation for historic preservation, new construction, 
facilities engineering and numerous other applications.  Optira is a partner with NIST in the FIATECH Laser Scanning 
Measurement Assurance project. 
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Figure 7.2: Since the laser scanner is a line-of-sight device, obtaining sufficient information for a 
complex environment such as the rubble pile requires several scan locations around and on top of the 
rubble. Scan locations are carefully chosen to capture sufficient scene data while enabling tie in to 
prior scans using pre-positioned targets.  

 

Figure 7.3: An image of the rubble pile (left). A registered perspective view of the point cloud that 
describes the rubble pile, generated from multiple scan locations (right).   

 
There are many potential uses for such data.  First, NIST will investigate means of representing the types of 
environments and specifically the complexities within the environment (especially for rubble) to see if there are 
predictable and consistent ways of representing rubble or other difficult terrain quantitatively.  Second, NIST, 
along with partner organizations, is investigating how to represent the point clouds and/or derivative terrain 
models within simulation environments. Importing point, polygonal, or surface models of realistic training 
scenarios into simulation systems can make the training scenarios themselves accessible to a wider set of robot 
developers. Robots can also  be modeled within these simulation environments, which support vehicle physics 
and scene interaction capability.  Responders, developers, researchers, and other interested personnel will be 
able to practice navigating robots within the scenarios at Disaster City – to some degree of fidelity. Intelligent 
behaviors for semi-autonomous robots can also be virtually tested within these simulated environments.   
 
This type of sensed data can also provide a preview of the kinds of data that may become available through 
sensors mounted on robots. Whereas the sensors used to capture this data are large, heavy and can require up to 
an hour to capture a scan; smaller, lighter 3D imaging sensors that generate data at sufficient rates to support 
real-time robot operations are starting to enter the market. These devices will not provide as high a resolution 
nor cover as large an area, but they will be able to give responders a much clearer understanding of the 
configuration of interior spaces searched by robots than 2D images alone. As 3D mapping algorithms become 
more capable, robots deploying 3D imaging sensors will provide critical information for emergency response.  
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Figure 7.4: A) NIST researchers capturing one scan around the passenger train wreck.  B) A bird’s-
eye-view of the full 3D point cloud of the passenger train wreck. 

 

Figure 7.5: A) An image of the wood pile taken from a man-lift.  B) The 3D point cloud combining 
three ‘overhead’ scans and several ground-level scans.  

 
The 3D image data collected during the response robot evaluation exercise will be made available to researchers 
to foster complex environment classifications, practice simulations environments, and robot development.  
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8.0 Asset Tracking within a Training Scenario 
NIST researchers have been working with an asset tracking system, developed by Multi-Spectral Solutions, 
Inc.6, to capture continuous location data for robots, personnel, and/or dogs operating within training scenarios. 
This tracking system requires equipping the perimeter of the scenario with antennas in carefully measured 
locations to receive signals and locate (via multilateration/hyperbolic positioning) the position of active radio 
tags affixed to moving assets within the scenario. It also requires one or more reference tags placed at known 
locations within the scenario for calibration. NIST uses this tracking system to capture quantitative performance 
data (2D or 3D positions over time) during training operations to compare particular technologies, approaches, 
and/or methods of deployment. This kind of quantitative data capture enables performance metrics such as: 
deviations from intended paths, dwell locations and durations, percent of area searched, completeness of 
collaborative searches, etc.  
 

 

  

Figure 8.1: Asset tracking system components include multiple receivers, active badge 
tags (1000mW), and smaller active tags (30mW).  (Not shown is the network hub, 
computer, and cabling.)  

 
NIST has performed system characterization tests in ideal conditions to determine the best possible 2D accuracy 
of the system, which was roughly 15-20 cm (6-8 inches). This tracking system has been used successfully for a 
few years within fabricated robot test arenas to capture 2D paths of individual robots, teams of collaborative 
robots, and dogs. Efforts to track assets within realistic training scenarios have produced mixed results. At a 
previous event, we tracked several responders moving through an intact building structure pre-equipped with 
antennas to produce data and videos of each responder’s 2D path overlaid onto the building floor plan. We also 
tracked assets in line-of-sight of the antennas across a large concrete rubble pile. However, attempting to track 
assets located in tunnels under the concrete rubble pile, or within surface voids on the pile, was unsuccessful 
due to the overall density of concrete rubble along with the limited power levels of the active radio tags 
(30mW) at that time. At Disaster City, we deployed the tracking system around the wood pile, which provided a 
more porous prop than the concrete rubble, and used higher power radio tags (1000mW).  
 

Figure 8.2: A) The wood pile scenario at Disaster City, with an overall size as shown of approximately 
40m long x 30m wide, has its highest elevation around the perimeter with a sunken interior. Access to 

                                                           
6 Fontana, R., Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Technology (Invited Paper), 

IEEE Microwave Theory & Tech., Vol. 52, No. 9, Sept. 2004. 
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the interior is either through B) buried culverts (shown in close-up), or C) over the elevated perimeter. 

  
Four receivers with antennas were attached to tripods located on the street surrounding the wood pile, forming a 
50m (160ft) by 37m (120ft) rectangle at an elevation of about 3m (9ft). Two additional receivers and antennas 
were placed at ground level of the two tripods located in opposite corners. All receiver antennas were pointing 
toward the center of the pile. Two reference tags were placed at elevated points within the wood pile for 
calibration of the system. 
 
Once the system hardware was placed, measured, and calibrated, several tests were conducted to see if robots, 
responders, and/or canines could be tracked. Due to limited time and our inability to get antennas to a 
conveniently elevated vantage point, we initially focused on 2D tracking, although some 3D data was obtained. 
To allow filtering and averaging of resolved location data, we placed two or more active radio tags on each 
asset to be tracked - one on either side of a responder helmet, for example. 
 

 
Figure 7.3: Tracking system receivers and antennas (shown in blue) were mounted to tripods around the 
perimeter of the wood pile. Robots with active radio tags affixed (shown in orange) were tracked around 
the wood pile, but they demonstrated limited mobility within the complex interior of the pile. Canines and 
their responder handlers, however, could traverse most of pile and provided much more interesting 
tracking subjects. 

 
Robots could be tracked as they performed initial reconnaissance on the street surrounding the wood pile, 
although the robots could not see the interior from the street because the highest points of the pile are around 
the perimeter. As the robots entered the wood pile through buried concrete culverts, the tracking data 
disappeared, probably due to the robot’s inability to exit the culvert into to the complex interior of the pile. 
Similarly, all attempts to track robots within the interior of the pile failed, probably due to signal attenuation 
from the very low robot positions within the pile, which required a straight-line path through the densely packed 
wood pile perimeter to reach the ground level receivers outside. Elevated antenna positions would certainly 
have helped, but we were unable to fit it into the schedule. 
 
Our efforts to track responders and dogs as they maneuvered in and around the pile were more successful. The 
radio tags placed around the dog’s collar and on the responder’s helmet could communicate with the tracking 
system receivers outside the pile because they were at some modest elevation above the interior rubble. They 
produced relatively clean 2D tracks while generally waling/climbing across the pile, but their tracking data 
disappeared when burrowing down into a void or culvert (similar to the robot’s typical position within the pile). 
 
Further system characterization experiments to determine 3D accuracy will contribute to the next response 
robot evaluation exercise, which will focus on tracking assets within conventional “stick-built” dwelling 
structures and multi-floor structures. Although this technology holds promise for tracking emergency 
responders at actual disaster sites, and several research organizations and commercial entities are working 
toward such eventualities, our focus remains on equipping training scenarios to capture and compare practice 
performance data to help establish and improve robot capabilities within complex environments. 
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9.0 Standards Committee Meeting (ASTM - E54.08.01) 
On the morning after the exercise, a meeting was held to focus on applying the lessons learned to the standard 
test methods in progress. As noted above, the key determination was which of the thirteen potential robot 
categories or deployment scenarios on which to focus.  The three robot categories are shown in Table 9.1 
below, and are further explained in the Preliminary Requirements Report7. Note that the terminology in 
“Category 8: Aerial High-Altitude Loiter Robots” does not precisely capture the type of capability the 
responders have now seen in action, and want to see included in Wave 1. All the aerial vehicles demonstrated at 
Disaster City operated under 300 feet above ground level (AGL) to avoid regulated airspace, and had flight 
durations of roughly 1 hour maximum. The responders noted that these systems clearly fit their Wave 1 
expectations for deployment. So at the next formal standards meeting, we will propose to clarify the 
terminology describing the category to better reflect the standard test methods piloted at Disaster City.  

Table 9.1:  Three robot deployment categories to focus Wave 1 standards test methods 

 
 Robot Category Employment Role(s) Deployment Method(s) Tradeoffs 

1 Ground:   
Peek Robots 

Provide rapid audio-visual 
situational awareness, provide 
rapid HAZMAT detection; data 
logging for subsequent teams 

Tossed, chucked, thrown 
pneumatically or with surgical 
tubing; marsupially deployed 

Trade mobility, 
duration, sensing 
for increased 
expendability 

3 Ground:   
Non-collapsed 
Structure – Wide Area 
Survey Robots 

Long range, human access 
stairway and upper floor 
situational awareness; 
contaminated area survey; site 
assessment; victim identification; 
mitigation activities; stay-behind 
monitoring 

Backpacked; self-driven; 
marsupially deployed 

Experienced form 
factor for increased 
mobility, sensing, 
manipulation; 
mapping variant; 
spraying variant; 
breaching variant 

8 Aerial:   
High-Altitude Loiter 
Robots 

Provide overhead perspective 
and situational awareness; 
provide HAZMAT plume 
detection; provide 
communications repeater 
coverage 

Released; balloon or fixed-
wing; tethered 

Trade penetration 
capacity for vertical 
perspective 

 
Regarding Category 1: Ground Peek Robots, the discussions centered on the visual acuity test methods since 
the so-called “peekbots” demonstrated at Disaster City were essentially remote cameras and microphones. The 
emphasis was on discussion of trade-offs between camera field of view (FOV), zoom capabilities, and 
illumination.  Some of the comments were: 
• Peekbots need to be able to see a minimum of 10 feet; this means they have to be able to illuminate at that 

distance. 
• Peekbots need to be able to see a minimum 10° FOV, but 10-30° is desirable. 
• Cameras with 30° FOV and 10X zoom seemed like a good tradeoff of field of view for image detail.  
• The visual acuity tests, which currently include various hazmat label sizes correlated to eye chart lines to 

emphasize real world uses, need to be augmented to clearly associate other more general scenario images. 
This would help responders identify performance objectives and thresholds for long range planning of 
routes, or example, and recognition of objects that are not textual. 

 
Regarding Category 3: Non-Collapsed Structure – Wide Area Survey Robots, the discussions centered on the 
immediate need for down-range deployment of hazmat sensors. Toward that end, NIST is working to have 
representative sensors available on robots at the next response robot exercise for responders to work with, and 
to begin devising test methods specifically addressing hazmat requirements. Sensors that responders are looking 
for (or equivalent capabilities) included: 
• Multi-gas detectors (O2, H2S, CO, Lower Explosive Limits of Volatile Organic Compounds, etc.) 
• Gamma detector for radiological incidents 
• Photo-ionization detectors (PID) toxic industrial chemical detector 
                                                           
7 Statement of Requirements for Urban Search and Rescue Robot Performance Standards (Preliminary 
Version), May 2005. http://www.isd.mel.nist.gov/US&R_Robot_Standards/Requirements Report (prelim).pdf 
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• Ion Mobility Spectrometer or flame photometry for weapons of mass destruction 
 
Regarding Category 8 Aerial High-Altitude Loiter Robots, the discussions centered on the perceived readiness 
of the SUAVs demonstrated at Disaster City for Wave 1 standard test methods and deployment. These 
discussions included relevant input from Dave Lund, Director of the Aerospace Vehicle Systems Institute at 
Texas A&M University. He was the key person in charge of enabling and conducting the operation of SUAV’s 
at Disaster City. The emphasis of the discussion was on how these SUAVs would be incorporated into field 
operations and modifications to make them more useful in the near term: 

• Remote situational awareness over a larger area (1-5 km) is the key objective, so repeated hand 
launching and easy recover is a must. 

• Deployments of SUAVs would always be above obstacles and buildings. They are not expected to 
navigate in urban canyons. 

• Vocabulary definitions are needed. For instance, “station-keeping” versus “orbit diameter” (which could 
be equal to 0 for a helicopter), “loitering,“ and “recovery point.” 

• SUAV cameras with higher resolution than the ones demonstrated are available and need to be tested.  
The aerial visual acuity tests highlighted the need to read hazmat labels on tanker trains, but none of the 
SUAVs could resolve such detail. 

• Image stabilization would improve clarity of aerial images. 
• Infrared and multispectral cameras are necessary also on SUAVs to see through smoke. 
• A “telestrator” capability as demonstrated, with video recording, playback, drawing overlays, image 

capture, and printing is essential. It is difficult to note features of possible interest in moving images, but 
backing up and freezing the image can mitigate this.    

• Maintaining a fixed gaze on a target of interest is an important capability, either through a well-defined 
altitude/orbit, or by an independently controlled pan/tilt/zoom camera. 

• Mosaics of images taken from aerial perspectives would also be useful. 
 

Other general items discussed at the standards meeting: 
• The need to be able to associate GPS and geographic information systems (GIS) data with survey data 

regarding both visual and hazmat sensors. 
• Ideally, the operator control unit would have access to recent maps of the region showing roadways. The 

operators could command aerial and/or ground robots to follow a known roadway for reconaissance. 
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10.0 Technology Gaps 
Based on feedback from the responders and technical robotics experts involved in this response robot evaluation 
exercises, there appear to be several technological gaps that hinder fielding capable and useful robots in urban 
search and rescue missions. This is not surprising since application of robots within this difficult domain is 
relatively new. Several technology gaps are outlined in this section.  They are driven by responder performance 
expectations, captured informally through observations and comments, and filtered by experienced robotics 
engineers. Underlying all the following discussions it is clear that robots, regardless of their onboard 
technologies, need to be made more rugged in order to withstand the rigors of deployments in disaster response. 
This need for ruggedness is inherent in all, and so not specifically discussed. There is no attempt in this report 
to assess the required efforts to close such gaps, or to note related activities already working to to do so. Some 
advanced robotic systems exist that address at least some of the requirements listed, but they are (a) not 
generally available to the community at large, (b) not yet scalable to smaller platforms, and/or (c) would, in 
their current form, add too much to the cost of the robots. 

Communications 
Most robots rely on wireless communications for command signals as well as for sensor feedback to the 
operator control unit (OCU). There are issues in terms of the limitations of the wireless range and susceptibility 
to interference and tampering.  In general for good performance, there must be line of sight between the OCU 
and the robot’s antennas, which is unrealistic in a cluttered, collapsed structure. Although the maximum line of 
sight distance attainable was not measured in this environment, even the manufacturers’ specifications do not 
typically claim the range required by the responders for ground robots, which can be more than a kilometer 
beyond line of site.       
 
There have been cases where, due to the lag in communications and actuation response by the robot, a robot has 
moved beyond communications range. At this point, the robot will not respond to any further commands or 
worse, may begin moving randomly. At minimum, robots should have an automatic behavior that backs up to 
the last known location where it could send and receive signals, or simply stops prior to losing communicaitons. 
 
In every large-scale event, there is a lot of signal interference among the different robots. This exercise was 
conducted in a relatively benign electromagnetic environment, with minimal radio or other interfering 
equipment active as compared with a real response situation. Yet many robots suffered performance 
degradation due to radio conflicts.  Some were incapacitated. Robot communications – both the command and 
the feedback signals – must avoid using the most popular frequencies (2.4 GHz, for example). At minimum, the 
OCU should include an indication of signal strength so that the operator can observe degradation before losing 
communications with the robot. Specific frequencies for response robots should be sought, to allow better 
management of multiple channels and generally higher power transmitters than typical commercial equipment. 
 
Tethers provide a well-known alternative to radio communications and resolve many key requirements that the 
responders have articulated: clear image and video resolution, beyond line-of-sight operations, security of 
command signals, security of video return signals, etc.  However, tethers as typically implemented have often 
introduced mobility problems in cluttered environments. Passive tethers dragging along behind a robot get 
snagged quickly. Active tether spools on the robots often require the operator to be cognizant of the tether to 
know when to pay out more line or retract it. Robots stepping on their own (fragile) tether can be another 
liability, resulting in damage to the tether and/or get caught up in the robot’s wheel/tracks. More innovative 
tether management schemes should be developed and incorporated into robots of all sizes. Large robots can 
allow tension controlled release and automatic retrieval when backing. Smaller robots, whose weight can be 
supported by a tether, can use a powered tether spool to augment maneuverability or deployment strategies in 
cluttered environments. Tethers that provide power, even as an auxiliary remote charging capability, as well as 
communications, can provide additional advantages. Some ideas may require that the tether be cut and the spool 
replaced once the robot emerges from the scenario through any exit (cost of deployment). In general, innovative 
tether management can provide many potential advantages: 

• Tethers can provide the only known visual reference for a remote operator working in a complex, 
unknown environment. A known reference such as this can help to avoid getting lost, which is extremely 
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easy to do. The tether can also mark the direction from which the robot came, and help identify areas 
already searched. 

• Tethers can provide responders the exact route to a victim, should the robot send back any promising 
signals that a victim has been found. This is beneficial whether the robot can maintain power, becomes 
disabled, or is simply lost and can’t convey an accurate location (which is likely). 

• Tethers can provide a clear path to an exit for victims in the environment that come across either the 
robot or the tether, especially if the tether is phosphorescent, has directional arrows and distances to the 
entry point (OCU), or sequenced lighting toward the entry point.  

• Tethers that can be actuated to support the weight of the robot can provide a controlled descent in 
vertical insertions or provide a controlled descent of stairs or off other other objects.  Controlled ascents 
can also help pull itself out of a bad position to try again. In this case, getting the tether “hooked” on 
something in the environment is helpful and necessary.   

• Tethers can allow connection/disconnection of the OCU at the entry point to enable periodic use by 
different response teams (recon then primary search, for example), especially if remote charging is 
included. 

• Tethers can allow remote charging of onboard batteries to sustain communications or enable periodic 
mobility after the first battery charge is exhausted. 

• Tethers can allow small robot launches via hammer-toss style of throwing, using the tether itself and the 
weight of the robot to increase the range of an initial throw over a wall or onto a roof.   

Sensors for Navigation and Mapping 
More and better sensors are needed to assist remote operators in complex environments. In terms of navigation, 
the onboard cameras are crucial, since the robots are remotely teleoperated most of the time. Onboard cameras 
have to provide the “driver” with an adequate sense of what is immediately surrounding the robot (s/he has to 
know if the rear track is caught on an obstacle, whether it is safe to turn left, if there’s an overhead hazard, or a 
hole that the robot might fall into. They also have to allow longer-range planning to recognize which direction 
may be easiest to traverse, identify potential victim signatures in a particular area, or perform feature inspection 
for structural instability.     
 
The quality of the cameras, meaning their resolution, field of view, ability to zoom, and to adjust to varying 
lighting conditions, varied greatly among the robots at the event. Most robots could improve their camera 
quality. According to the responders, longer ranges (up to 1000 feet) are desirable. However, a greater 
challenge is how to utilize the camera(s) in order to present information to the operator effectively. Some 
OCU’s contain multiple windows with the views from the different cameras; this is very confusing to some 
operators. Therefore a multiplicity of camera views is not necessarily the solution to this problem.  
 
Monocular cameras make it difficult to perceive depth or to estimate distances. An obstruction may seem 
further or closer than it really is. Therefore, providing the operators with more of a three-dimensional sense of 
the world around the robot and of ranges to distant objects is a high priority. Range-imaging sensors (e.g., 
LADARs) that are very small, lightweight, can cope with different illumination levels and longer ranges would 
be helpful in providing surrounding three-dimensional geometry. Algorithms that register multiple scans and 
stitch together a map of the areas explored by the robot would facilitate the navigation and greatly increase the 
value of the robots for the responders. 
 
Maps created by the robot as it explores an environment should also fuse information from the color cameras 
and other sensors (e.g., be able to tie a snapshot of an area of interest to a location on the map so it can be 
viewed upon request). The estimated source and intensity of a detected infrared signature can be indicated on 
the map, as can those from CBRNE sensors. Responders should also be able to manually annotate the maps.   
 
On some robots at Disaster City, the cameras could be panned and/or tilted. This flexibility needs to be 
carefully implemented as well. Responders are working under duress, therefore the controls for the camera 
positions need to be as intuitive as possible. And the current orientation of the sensors ought to be clear to the 
operator. Navigation aids, such as GPS coordinates (where available) or an overhead map view showing where 
the robot currently is within either an a priori map or one acquired by the robot’s sensors, would be extremely 
useful.  
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More sensors are required in order for the robots to be more effective in disaster response. Infrared cameras 
need to be integrated with special emphasis on variable illumination requirements so that the scene doesn’t 
wash out from multiple illuminators. Switching between camera views, which have different perspectives, 
fields of view, or magnification, puts an additional burden on the responder. Effective means of presenting the 
information to the responder when s/he needs it must be developed.  
 
Audio may be an under-utilized sensing modality. Some robots have microphones onboard the robots. In some 
cases, expert users rely on the microphone to detect status of the robot itself (e.g., if its motors are laboring 
harder than expected, or slippage is occurring). Research into how to better utilize audio for augmenting the 
situational awareness of the operator, both for the robot’s state and for searching the environment, may be 
warranted. Multiple microphones, or example, could help indicate the direction of a particular sound source. 
 
Other sensors, such as for chemical, biological, radiological, nuclear, or explosive detection (CBRNE), must be 
miniaturized so as to easily fit on smaller robots. NIST will begin conducting exercises integrating CBRNE 
sensors with robots in the summer of 2006 and will report on the status of that technology at the appropriate 
time.  

Integration with other Geographic Information Systems 
It would be intuitive for responders to be able to command robots (either aerial or ground) to follow existing 
roadways on digital terrain maps within the OCU. This would require the ability to import some form of 
geographic information (format TBD), being able to command the robot by giving it waypoints in world 
coordinates, and geo-referencing the position of the robot (tracking its location with respect to map positions).  
Elements of this capability exist in commercial equipment, and were demonstrated on some aerial robots, but 
were not seen within the ground robots present at Disaster City.  

Mobility 
Effective mobility of robots over a wide variety of challenging terrains is not yet a reality. The wood pile in 
particular proved to be not generally traversable by robots. This is an open research area that requires a more 
methodical approach in trying to understand mobility characteristics versus robot morphology and other 
attributes. For robots with adjustable gaits or geometries, it would be useful for the operator to simply choose 
from a selection of practiced initial configurations for climbing or descending, or going over or under objects.  
The operator should also be able to seamlessly transition to a particular gait, or try a sequence of gaits, for 
unknown terrain the robot is trying to traverse.  

Manipulation 
Some of the robots at Disaster City deployed manipulators which can be used to open doors or move objects, 
given enough time, skill, and patience by the operator. Those that have cameras on the arm can use the arm to 
gain better views of regions of interest, such as around corners or over obstacles. It is typically difficult to 
quickly move the gripper to a desired position and orientation using switches to control the manipulator joint by 
joint – which is typical of currently deployed response robot manipulators. The technological gap is the 
introduction of coordinated motion control techniques for manipulators onto these mobile platforms. 
Coordinated motion control manipulators enable the operator to move the gripper in a direction in absolute 
space (straight up/down, left/right, diagonal, etc.) or relative to the robot’s body, often from a single multi-
directional joystick. This relieves the operator from the burden of having to figure out which joints to move, and  
how much, to get the desired motion. Coordinated controlled manipulators are a well-known area of robotics, 
existing in virtually every pedestal-mounted robot in manufacturing applications today. Integration of this 
technology onto mobile robots should be straightforward and quick, with huge potential payoffs. For example, 
door-opening tasks could be performed more efficiently if an operator could control a manipulator to perform a 
rotational wrist turn (on a door knob) followed by a purely horizontal arcing motion to swing a hinged door 
open. The area of research that this opens is the combination of coordinated controlled manipulators working 
together with mobile bases to perform advanced capabilities.  For example, opening exterior dwelling doors, 
which require that same pulling motion while negotiating a stoop and stair step or other complicated mobility. 

Human/Robot Interaction 
Several items above relate to the interaction between the operator and the robot through the operator control 
unit. These interactions include receiving information from the robot sensors, and the operator’s cognitive 
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workload while s/he attempts to maneuver the robot through complex, unknown environments. The operator is 
always attempting to perform remote situational assessments to negotiate the environment, and given the 
stressful conditions under which responders must deploy these robots, the workload can easily become 
unacceptably high. Presenting the responder with an integrated, easily understandable view of the situation 
surrounding the robot, along with the health/status of the robot, is a requirement that needs to be addressed for 
response robots to become effective tools for emergency response. 
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11.0 Summary 
The exercise held at Disaster City® helped advance understanding of the performance issues relevant to 
application of robots to urban search and rescue missions. Working closely with subject matter experts within 
relevant training scenarios, NIST and other organizations were able to further develop and refine performance 
requirements and test methods for US&R robots. The responders gained insights pertaining to the current status 
of robotic technology as well as the future potential. They determined the three initial robot categories for Wave 
1 standard test methods and deployment.  The categories address small, throwable “Ground Peek Robots”; 
“Wide-Area Survey Robots”; and “High Altitude Loiter Robots” (which may require a change in description 
since effective altitudes were demonstrated at Disaster City to be 300 ft. above ground level). The responders 
were able to begin developing new concepts of operation, which will be essential once Task Forces and other 
response organizations begin to integrate robots into their deployments. The manufacturers were able to gain 
firsthand knowledge of the expectations that responders have for robots used in search and rescue missions.   
They received direct feedback from the responders on their systems, and better correlated the stated 
performance requirements with the expected environments. And the various working groups responsible for 
developing test methods under the ASTM US&R robot standards task group collected data. The test methods 
and artifacts will be refined as a result of the lessons learned.        
 
As planned, the proposed test methods for Wave 1 will be submitted into the balloting process this year. The 
stakeholders will have an opportunity to review the test methods in their near-final incarnations in August 2006, 
when the next response robot evaluation exercise will be held in Maryland. At that event, responders will have 
an opportunity to begin experimenting with sensor payloads on the robots. Per their feedback at Disaster City®, 
NIST is working with manufacturers, sensor standards groups, and others to devise scenarios wherein sensors 
for detecting chemicals, radiological materials, and possibly biological and other hazards are mounted on 
robots. 

Acknowledgements 
The NIST team would like to acknowledge many individuals from several organizations that made this event 
successful. The Department of Homeland Security, through the Science and Technology Directorate Standards 
Portfolio, provides funding for the overall standardization effort.  Dr. Bert Coursey, the Portfolio Executive, has 
been instrumental in setting up the overall program. The entire Texas Engineering Extension Service (TEEX) 
team, and many others from Texas Task Force 1 and Texas A&M University, provided extremely constructive 
collaborations during the planning process and exceptional support during the exercise itself: special thanks go 
to Dr. Kemble Bennett and Bob McKee for making the event possible; to Billy Parker for anticipating every 
detail and making it all happen so smoothly; and to David Lund for conducting such a comprehensive, and safe, 
aerial exercise. We thank the FEMA Task Force members from across the country, and other participating 
emergency responders, who continue to provide essential input for defining performance requirements and 
developing standard test methods for US&R robots. We thank and commend the participating robot 
manufacturers, developers, and researchers who allowed their robots to be subjected to harsh, but realistic, 
conditions and handling. We appreciate your eagerness to spend time with the responders to show them your 
technologies and to learn about their requirements. We hope (and expect) your lessons learned exceed the time 
and costs associated with robot repairs! Thanks also to ARACAR for your comprehensive deployment of 
ground, aerial, and underwater robots, along with your team of robot operators with “can do” attitudes. Finally, 
thanks to Optira, Inc, for capturing the scenario descriptions using 3D imaging, which will greatly support 
related efforts toward rubble classification and high fidelity simulation environments of actual training 
facilities.

 38



 

Appendix A – Participants 

Responders 

Tom Haus   CA-TF1 
Lee Haus   CA-TF1 
Dan Kawamoto   CO-TF1  
John Quinn   CO-TF1 
Michael Conditt   NE-TF1 
Sam Stover   IN-TF1 
Michael Steed   MD-TF1 
George Hough   NY-TF1 
Randy Miller   NY-TF1 
Billy Parker   TX-TF1 
Robert McKee   TX-TF1 
Mark Hundley   VA-TF2 
 
Glenn Keller   Allentown Fire Department 
Roberto Manca Ontario Provincial Police (OPP) – Provincial Emergency 

Response Team (PERT) 
Alex Ferworn   Ryerson University – OPP PERT 
 

Other Registered Participants  

Steve Richards Acroname Inc. 
Calvin Au AeroVironment Inc. 
Ricky Rogers AeroVironment Inc. 

Nowell Siegel AeroVironment Inc. 

Alan Lawson Applied Research Associates 
Adam Sloan Applied Research Associates 
Bou Baldwin ARACAR 
John Blitch ARACAR/Blitz Solutions Inc. 
Blake Douglas ARACAR 
Dave Grilley ARACAR 
Chris Nagelvoort ARACAR 
Mike Pierce ARACAR 
Romario Wallace ARACAR 
Eric Poulson Autonomous Solutions 
Omar Salas Autonomous Solutions 
Ryan Robinson Cyber Defense Systems 
Satoshi Tadokoro Intl Rescue System Inst / Tohoku Univ 
Robert Smith iRobot Corp. 
John Evans JOHN M EVANS LLC 
Bruce Billian JOUSTER / Virginia Tech 
Rodney Brown JOUSTER / Virginia Tech 
Kirk Jenkins L-3 BAI Aerosystems Inc. 

A-1 



 

Matt Lister L-3 BAI Aerosystems Inc. 
Mike Stevens L-3 BAI Aerosystems Inc. 
Lisa Diamanti L-3 Communications - BAI Aerosystems 
Sridhar Lakshmanan M-Bots, Inc. 
Vin Varghese M-Bots, Inc. 
Keith Bowen Mesa Robotics, Inc. 
Mike Cole Mesa Robotics, Inc. 
Don Jones Mesa Robotics, Inc. 
Sameer Savant Mesa Robotics, Inc. 
Brian Antonishek NIST 
Geraldine Cheok NIST 
Hui-Min Huang NIST 
Adam Jacoff NIST 
Galen Koepke NIST 
Elena Messina NIST 
Craig Schlenoff NIST 
Jean Scholtz NIST 
Brian Stanton NIST 
Ann Virts NIST 
Brian Weiss NIST 
Joel Criswell Northrop Grumman Corp - Remotec, Inc. 
Jim Daniels Northrop Grumman Corp - Remotec, Inc. 
Eric Thompson OnSight Consulting 
Nathan Gray Optira 
Mitchell Schefcik Optira 
Travis Gray Optira 
Sanjeev Swarup Skeyes Unlimited 
Tamas Kalmar-Nagy Texas A&M University Vet Teaching Hosp 
Anthony Detrick TSWG/BATTELLE 
Joe Alexander U.S. Army TARDEC-RDECOM 
William Smuda U.S. Army TARDEC-RDECOM 
James Lawrence University of Alabama in Huntsville 
Stephen Phillips University of Alabama in Huntsville 
Kenneth Horton Unknown 
Michael Fleming Virginia Tech University 
Ronald Cochran WVHTC Foundation 
Robert  Bean WVHTC Foundation 
   
   
 

A-2 


	Executive Summary
	1.0 Introduction
	2.0 Background
	3.0 Participants
	4.0 Scenarios
	House of Pancakes (Prop #130)
	Single Family Dwelling (Prop #129)
	Strip Mall (Prop #131)
	Rubble Pile #2 (Prop #132 near #133 platform)
	Wood Rubble Pile #3 (Prop #136)
	Passenger Trains (Prop #126 and #127)
	Industrial Hazmat Trains (Prop #116 and #117)
	Water Scenario (Prop #000)

	5.0 Emerging Test Methods
	Logistics – Cache Packaging – Volume
	Logistics – Cache Packaging – Weight
	Sensing – Vision System – Acuity (Near Field)
	Sensing – Vision System – Acuity (Aerial)
	Sensing – Vision System – Acuity (Underwater):
	Payload – Manipulation – Maximum Reach
	Payload – Manipulation – Retrieval
	Human/System Interaction – Acceptable Usability
	Communications – Range – Beyond Line of Sight
	Mobility – Locomotion – Sustained Speed
	Mobility – Aerial – Path Following
	Mobility – Aerial – Station-keeping
	Mobility – Stair Climbing, Ramps, and Confined Space Access

	6.0 Data Collection
	6.1 Images and Video
	6.2 Responder Questionnaires
	6.3 “Hot Wash” Discussions
	Sensors
	Mobility
	Communications
	Human/System Interaction
	Manipulation
	Logistics
	Concepts of Operation


	7.0 Scenario Descriptions Using 3D Imaging
	8.0 Asset Tracking within a Training Scenario
	9.0 Standards Committee Meeting (ASTM - E54.08.01)
	10.0 Technology Gaps
	Communications
	Sensors for Navigation and Mapping
	Integration with other Geographic Information Systems
	Mobility
	Manipulation
	Human/Robot Interaction


	11.0 Summary
	Acknowledgements

	Appendix A – Participants
	Responders
	Other Registered Participants


